Efficient Minimization of the Non-local Potts Model

نویسندگان

  • Manuel Werlberger
  • Markus Unger
  • Thomas Pock
  • Horst Bischof
چکیده

The Potts model is a well established approach to solve different multi-label problems. The classical Potts prior penalizes the total interface length to obtain regular boundaries. Although the Potts prior works well for many problems, it does not preserve fine details of the boundaries. In recent years, non-local regularizers have been proposed to improve different variational models. The basic idea is to consider pixel interactions within a larger neighborhood. This can for example be used to incorporate low-level segmentation into the regularizer which leads to improved boundaries. In this work we study such an extension for the multi-label Potts model. Due to the increased model complexity, the main challenge is the development of an efficient minimization algorithm. We show that an accelerated first-order algorithm of Nesterov is well suited for this problem, due to its low memory requirements and its potential for massive parallelism. Our algorithm allows us to minimize the non-local Potts model with several hundred labels within a few minutes. This makes the non-local Potts model applicable for computer vision problems with many labels, such as multi-label image segmentation and stereo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem?

An important subclass of the min-sum labeling problem (also known as discrete energy minimization or valued constraint satisfaction) is the pairwise min-sum problem with arbitrary unary costs and attractive Potts pairwise costs (also known as the uniform metric labeling problem). In analogy with our recent result, we show that solving the LP relaxation of the Potts min-sum problem is not signif...

متن کامل

A Lower Bound by One-against-all Decomposition for Potts Model Energy Minimization

Energy minimization in computer vision can be formulated as minimizing a separable function of discrete variables. Such formulation arises, in particular, in Gibbs probabilistic models, which are suitable for many low-level image processing tasks. A special type of this probabilistic model, the Potts model, was successfully applied in segmentation, stereo and image denoising. Importantly, the P...

متن کامل

A Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers

This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...

متن کامل

Partial Optimality via Iterative Pruning for the Potts Model

We propose a novel method to obtain a part of an optimal non-relaxed integral solution for energy minimization problems with Potts interactions, known also as the minimal partition problem. The method empirically outperforms previous approaches like MQPBO and Kovtun’s method in most of our test instances and especially in hard ones. As a starting point our approach uses the solution of a common...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS

The Isogeometric Analysis (IA) is utilized for structural topology optimization  considering minimization of weight and local stress constraints. For this purpose, material density of the structure  is  assumed  as  a  continuous  function  throughout  the  design  domain  and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011